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Abstract Our overall aim is for the full potential of magnetic resonance spectroscopy
(MRS) and magnetic resonance spectroscopic imaging (MRSI) to be realized in oncol-
ogy. This requires mathematics, without which encoded MRS data are entirely uninter-
pretable. Mathematics based on the conventional approach, the fast Fourier transform
(FFT), and ambiguous fittings of Fourier spectra cannot fulfill the rigorous demands
of oncology. It is vital to go beyond the FFT and fitting, to obtain reliable quantitative
information via MRS about the metabolic content of tissue. None of the available
MRS fitting algorithms could provide the clinically needed information with cer-
tainty, namely, the metabolite concentrations. Our more advanced method, the fast
Padé transform (FPT) is firmly established as a stable, high-resolution processor, with
which metabolite concentrations are unequivocally generated for in vitro MRS data
associated with prostate, breast and ovarian cancer. Validation of the FPT has also been
performed for in vivo MRS of normal human brain from clinical magnetic resonance
scanners (1.5 T) as well as from 4 to 7 T scanners. The FPT successfully handles major
problems hindering more widespread clinical application of MRS and MRSI, such as
separation of noise from signal, resolution of very dense spectra with multiplet reso-
nances (prostate) and overlapping metabolite resonances (breast, brain). In the present
paper, we focus upon the implications of resolution enhancement by the FPT. We con-
clude that the manner by which the FPT achieves its high resolution accuracy dictates
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Department of Oncology and Pathology, Karolinska Institute, P.O. Box 260, 171 76 Stockholm, Sweden
e-mail: Dzevad.Belkic@ki.se

K. Belkić
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a major reformulation of the concept of data acquisition by encoding a small number
of short transient time signals to secure good signal-noise ratio. Padé-guided MRS has
distinct clinical advantages in combining improved diagnostic accuracy of MRS with
shorter examination times. This shortens turn-around time for patients, making MRS
efficient and cost-effective. With Padé-based quantification plus FPT-guided encoding
of MRS and MRSI data, MRS can become a reliable, cost-effective tool for diagnostics
and various aspects of patient care within oncology.

Keywords Magnetic resonance spectroscopy · Quantification · Mathematical
optimization · Padé approximant · Resolution enhancement · Radiation therapy ·
Encoding strategy

Abbreviations

PA Padé approximant
FPT Fast Padé transform
DFF Denoising Froissart filter
PLQ Padé-linear quadratic model
FFT Fast Fourier transform
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NMR Nuclear magnetic resonance
FID Free induction decay
MB Megabyte
SNR Signal-noise ratio
SNS Signal-noise separation
RT Radiation therapy
BPH Benign prostatic hypertrophy
PSA Prostate specific antigen
ppm Parts per million
RMS Root mean square
ww Wet weight
Iso Isoleucine
Val Valine
Thr Threonine
Lac Lactate
Ala Alanine
Lys Lysine
Met Methionine
Gln Glutamine
Cr Creatine
Crn Creatinine
Cho Choline
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tCho Total choline
Glc Glucose
GPC Glycerophosphocholine
PC Phosphocholine
PE Phosphoethanolamine

1 Introduction

In order for the full potential of magnetic resonance spectroscopy (MRS) and magnetic
resonance spectroscopic imaging (MRSI) to be realized in oncology, mathematics are
required. Without mathematics, the encoded MRS data are entirely uninterpretable.
Mathematics based on the conventional fast Fourier transform (FFT), and ambiguous
fittings of Fourier spectra cannot fulfill the rigorous demands of oncology. It is essential
to offer a different vision from the FFT and fitting in order to obtain reliable quantitative
information via MRS about the metabolic content of tissue. None of the existing
MRS fitting algorithms is capable of providing the clinically needed information with
certainty, especially the metabolite concentrations. Our more advanced method, the
fast Padé transform (FPT) is firmly established as a stable, high-resolution processor
[1–6], with which metabolite concentrations are unequivocally reconstructed from in
vitro MRS data associated with prostate, breast and ovarian cancer [4,6–11]. Validation
of the FPT has also been performed for in vivo MRS of normal human brain from
clinical MR scanners (1.5 T) as well as from 4 to 7 T scanners [1,2,4,12–14]. Thus,
the FPT can successfully handle major problems hindering more widespread clinical
application of MRS such as separation of noise from signal [4,5,11,15], resolution
of very dense spectra with multiplet resonances (prostate) [4,7,14] and overlapping
metabolite resonances (breast, brain) [1–4,8,9,13].

Magnetic resonance is one of the leading diagnostic modalities within oncology.
Magnetic resonance imaging (MRI) is highly sensitive for detecting cancer, but often
insufficiently specific to distinguish malignant from non-cancerous pathology. Speci-
ficity can be improved by MRS which detects the metabolic features of cancer. Leading
experts consider MRS to have the potential to revolutionize cancer diagnostics, image-
guided surgery and target definition for radiation therapy (RT) [16–23]. More robust
signal processing within MRS is crucial for achieving this potential, as emphasized
by the U.S. National Cancer Institute [16]. It is here that the fast Padé transform can
make a unique contribution.

One might wonder why would progress in MRS for oncology depend so critically
upon mathematical optimization? This is the case because mathematical methods
are needed since the measured MR data (time signals) cannot be interpreted directly.
These MR time signals must be mapped via mathematics into the frequency domain to
visualize the spectrum with peaks characterizing the tissue metabolites. The positions,
widths, heights and phases are the spectral parameters of these peaks that determine
the metabolite resonant frequencies, relaxation times and concentrations. Spectral
analysis is an inverse problem where the measured result (time signal) is known,
but its constituents (the spectral parameters) are unknown. Inverse problems are very
common in medicine, indeed, through the familiar concept “the outcome is known but
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the cause(s) are to be found” [1,4]. A major drawback of the FFT is that, as a single
frequency-dependent polynomial FN for N signal points, only the total shape spectrum
(envelope) through non-parametric estimation can be obtained. The FFT cannot solve
the quantification problem, which is the main task of MRS. To extract metabolite
concentrations from an FFT spectrum comprised of metabolite peaks, fitting is used
in post-processing by guessing the number of components underlying each peak. This
inevitably generates false peaks (over-fitting or over-modeling) or fails to identify true
resonances (under-fitting or under-modeling). Either case introduces new dilemmas
to MRS and these are anathema to clinicians.

The FPT overcomes these defects via better-equipped mathematics as the ratio of
two frequency-dependent polynomials PK /QK (2K ≤ N ) that are extracted uniquely
and directly from the investigated time signal. The total shape spectrum in the FPT is
obtained at any desired frequency, and not just at the pre-assigned Fourier grid from
the FFT. This gives the Padé-brought interpolation capability. Unlike the FFT, the
FPT is also a reliable extrapolator [1–4]. These two features provide high resolution
performance of the FPT. The FPT can work as a parametric estimator by solving
the quantification problem via reconstruction of the exact number K of metabolites
and their 2K genuine parameters (complex frequencies and complex amplitudes). In
quantification by the FPT, the total number of resonances (K ) is not surmised, but
is treated as another spectral parameter to be reconstructed. This is achieved through
signal-noise separation (SNS) [2,3,15] by which a genuine signal is distinguished
from noise. The spectral parameters permit obtaining the component shape spectra
for each metabolite. The total shape spectrum is the sum of K metabolite spectra.
Robust error analysis is performed by searching for constancy of the retrieved spectral
parameters and the resulting stability of the component and total shape spectra. Self-
contained cross-checking and validation are provided by two different variants of the
FPT, denoted by FPT(+) and FPT(−), that are initially defined inside and outside the
unit circle, respectively, in the complex frequency plane [1–4]. When convergence
is achieved by these two variants to the same reconstructed spectral parameters for
all physical resonances, exact quantification of the examined time signal is verified
to be complete. The FPT is the method of choice for MRS, since the diagnostically
relevant concentrations of genuine metabolites are extracted uniquely and accurately
from the reconstructed spectral parameters. Thereby, the FPT-generated metabolite
concentrations become the long-sought gold-standard for diagnostics via MRS.

2 Cancer diagnostics through magnetic resonance: highlights for four key
problem areas

2.1 Brain tumors

Within neuro-oncology, the potential of MRS/MRSI is well appreciated, as reviewed
in Refs. [4,14,18,20,24,25]. Since the most delicate clinical decisions are made, max-
imally reliable information is sought. In no other area of oncology are MRS/MRSI so
widely incorporated into clinical practice, as one of the key modalities for brain tumor
diagnostics and management. The limitations of the FFT are all the more striking. Thus,
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e.g., rather than obtaining accurate concentrations for some 25 metabolites, as can
readily be achieved by the FPT [2,3,13,26], with the FFT much of neuro-diagnostics
through MRS has been reduced to a semi-quantitative approach, based upon metabo-
lite ratios, most often choline to creatine. Within radiation neuro-oncology, our recent
study [26] shows that many recurrent primary brain tumors are thereby misclassified
as radiation necrosis. Thus, the need to apply the FPT to post-RT data was under-
scored, since it provides much richer and more reliable metabolic information that
would better distinguish brain tumor recurrence from post-RT necrosis [26].

2.2 Prostate cancer

Compared to MRI, in vivo MRSI can help: (a) differentiate between prostate cancer
and benign prostatic hypertrophy (BPH), (b) find optimal site(s) for biopsy, (c) detect
extracapsular extension, (d) select treatment modality as well as timing and (e) assess
tumor regression versus recurrence after treatment [4,14,19,20,27]. Within RT, in
vivo MRSI has been used to help detect the dominant intra-prostatic lesion that should
receive a boost dose [14]. The ratio of two MR-observable metabolites, choline at
∼3.2 parts per million (ppm) and citrate (∼2.5–2.7 ppm) has been the cornerstone
of prostate cancer diagnostics. Citrate is an indicator of healthy secretory activity of
prostate epithelia, while choline reflects phospholipid metabolism of cell membranes,
and is a marker of cell proliferation. There are however important exceptions: with
metabolic atrophy due to radiation or hormonal therapy or in stromal prostate tis-
sue, citrate levels are low without cancer being present. With BPH, citrate can be
high despite coexistent malignancy. In our textbook [28], citrate and choline alone
were noted to be insufficiently accurate to distinguish various patterns of prostatic
disease. Moreover, MRS for prostate cancer has been insufficiently sensitive for ana-
lyzing smaller lesions. While showing some promise for distinguishing high- versus
low-risk prostate cancer, FFT-processed MRS does not provide unequivocal results
[29]. Limitations in resolution and interpretation of data from MRS are challenges
in prostate cancer diagnostics, staging and surveillance [30]. In vitro MRS applied
to extracted prostate specimens gives more insight into the metabolic activity of can-
cerous prostate tissue [31]. Still, the multiplets and closely-overlapping resonances
of different metabolites in prostate spectra pose problems for quantification that are
not solved by the FFT and follow-up fitting [31]. The fast Padé transform has been
applied to MRS data as encoded in vitro from normal glandular and stromal prostate
and prostate cancer [31]. The FPT retrieved the genuine biochemical content of the
scanned tissue for these three cases using only a fraction of the full signal length.
The Padé absorption component spectra resolved all physical resonances, including
multiplet resonances and overlapping peaks of different metabolites. Thus, the FPT
yielded the unique metabolite concentrations for distinguishing normal from cancer-
ous prostate tissue [4,7,14].

2.3 Breast cancer

Although contrast-enhanced MRI is generally very sensitive, false negatives do occur
for small breast cancers, especially those that do not selectively take up contrast.
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However, the main drawback of MRI is lack of specificity (false positives) [32]. Speci-
ficity is improved via in vivo MRS, as per data published for more than 200 breast
lesions [4,33,34]. In these studies, the FFT and fitting were used, with consequent
limitations in resolution, signal-noise ratio (SNR), and restricted estimates of only
one composite compound, which is total choline (tCho). Especially problematic is the
limited possibility of MRS to distinguish smaller tumors (< 2 cm) from benign lesions
[35]. Specificity is reduced with exclusive reliance upon tCho since increased total
choline can be seen in benign breast pathology and during lactation. Total choline
is often undetected in small tumors that are misclassified as benign [36]. The high
resolution of in vitro MRS gives more insight into metabolic activity of cancerous
breast. We performed extensive multivariate analysis [37] of such data from extracted
breast specimens [38] revealing rich spectroscopic information in closely-overlapping
resonances for detecting breast cancer. The FPT has been applied to MRS data as
encoded in vitro from (i) normal, non-infiltrated breast tissue (ii) benign pathology
(fibroadenoma) and (iii) malignant breast tissue [38] with exact reconstruction of the
tissues’ genuine biochemical content from the input time signals [8,9,13]. The Padé
absorption spectra resolved all the extracted physical metabolites, even those that were
completely overlapping (phosphocholine (PC) and phosphoethanolamine (PE) at 3.22
ppm). The FPT precisely quantified the physical resonances as encountered in normal
versus benign versus malignant breast, including diagnostically important metabo-
lites, such as lactate, choline and PC versus glycerophosphocholine (GPC) that very
closely overlap. Specifically, PC is a marker of breast cancer. The PC/GPC ratios were
computed as 0.59, 1.57 and 2.6, respectively demonstrating the so-called “GPC to PC
switch”, associated with malignant transformation [22].

2.4 Ovarian cancer

Standard diagnostic methods are generally inadequate for early detection of ovarian
cancer. Due to the small size and motion of the ovary, in vivo MRS has limited res-
olution and poor SNR [4,28,39]. Yet, a rich store of MRS-observable compounds
distinguishes benign from cancerous ovarian lesions when in vitro MRS is applied
with its attendant high resolution. Concentrations of very closely-lying resonances
e.g. isoleucine (Iso) and valine (Val) at approximately 1.02 ppm and 1.04 ppm differ
significantly in these two types of lesions. The high concentrations of these amino-
acids are protein breakdown products due to necrosis and proteolysis. Generally, MRS
has been viewed as the potential method of choice for detecting early stage ovarian
cancer, insofar as the current obstacles hindering acquisition of high quality time sig-
nals and their subsequent quantitative analysis and interpretation are surmounted [40].
In applications [4,10,11,13] of the FPT to time signals associated with MRS data for
benign and cancerous ovarian cyst fluid from Ref. [40], all the spectral parameters of
every physical metabolite were exactly reconstructed by using very small fractions of
the full time signals [4,10,11]. By contrast, with the FFT, the spectra generated at these
short signal lengths were totally uninterpretable [4,10,13]. Resorting to long signal
lengths worsens SNR in the FFT, since at longer acquisition times noise becomes
detrimental for any Fourier-based attempts to improve resolution. When the FFT and
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fitting are used, the so-named “spectral crowding” becomes a major problem in split-
ting apart the closely-lying resonances. Our results [4,10,11,13] demonstrate that the
FPT can separate noise from signal and thus improve SNR and resolution, which have
been a major barrier to in vivo applications of MRS for ovarian cancer diagnostics.

Overall, in conclusion to this section, the achievements to date of the fast Padé
transform in MRS-based cancer diagnostics [1–15], motivate the need for direct clin-
ical implementation of the FPT within oncology. The present paper provides critical
new steps for that process, in relation to resolution enhancement and the practical
implications thereof.

3 The fast Padé transform

3.1 The structured time signal

The typical MRS time signal {cn}, or free induction decay (FID) curve is given by the
following linear combination of K complex exponentially attenuated harmonics:

cn =
K∑

k=1

dkeinτωk , 0 ≤ n ≤ N − 1 , (1)

where N is the total signal length and τ is the sampling time. Quantities {ωk} and {dk}
are the fundamental complex frequencies and complex amplitudes, respectively. This
signal has a structure which is described though the set of the fundamental frequencies
and the corresponding amplitudes {ωk , dk} (1 ≤ k ≤ K ) of the system which produced
the FID after being exposed to an excitation. The particular form (1) is prescribed by the
quantum-mechanical description of general time evolution of any dissipative system
which is set in an oscillatory motion by external perturbations. The system operator
�̂ for any dissipative dynamics is a non-Hermitean operator which, therefore, has a
spectrum built from complex eigenvalues {ωk}. This maps the complex exponential
from (1) into the form:

eiωk nτ = einτRe(ωk )−nτ Im(ωk )

= e−nτ Im(ωk) {cos (nτRe(ωk)) + i sin (nτRe(ωk))}, Im(ωk) > 0. (2)

We see from here that dissipative systems, i.e. the systems that lose energy during
their forced motions, must necessarily exhibit exponential damping via e−nτ Im(ωk )

of forced oscillations whose non-attenuated part is described by the purely trigono-
metric function cos (nτRe(ωk)) + i sin (nτRe(ωk)) = einτRe(ωk ) of constant (unity)
amplitude.

3.2 The exact finite-rank Green function or response function

The exact spectrum is defined by the finite-rank Green function at any frequency ω in
terms of the time signal points {cn} from (1) as follows:
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G N (z−1) = 1

N

N−1∑

n=0

cnz−n, z−1 = e−inτω. (3)

Inserting cn from (1) into (3) permits the exact summation over n by means of the
binomial formula

∑N−1
n=0 un = (1 − uN )/(1 − u) with the result:

G N (z−1) = 1

N

K∑

k=1

dk
1 − (zk/z)N

1 − zk/z
. (4)

The rhs of Eq. (4), as the ratio of two polynomials, is by definition the Padé approximant
(PA) [1]. Therefore, without any approximation, the exact finite-rank Green function
G N (z−1) from (3) is reduced to the PA, which is in the field of signal processing
renamed to the fast Padé transform or the FPT [1].

3.3 Various representations of the Padé response function

The fast Padé transform can have two forms, with the initial convergence region
inside and outside the unit circle |z| < 1 and |z| > 1 as denoted by FPT(+) and
FPT(−), respectively. The diagonal FPT corresponds to the case of equal degrees of
the numerator and denominator polynomials. The most frequently used para-diagonal
FPT is the one in which the degree of the numerator polynomial is by 1 smaller than
that of the numerator polynomial.

The para-diagonal FPT(−) consists of expressing the exact finite-rank response
function G N (z−1) by the polynomial quotient P−

K−1(z
−1)/Q−

K (z−1) :

FPT(−) : G N (z−1) ≈ P−
K−1(z

−1)

Q−
K (z−1)

. (5)

The numerator and denominator polynomials P−
K−1 and Q−

K of degrees K − 1 and K
read as:

P−
K−1(z

−1) =
K−1∑

r=0

p−
r z−r , Q−

K (z−1) =
K∑

s=0

q−
s z−s , (6)

where {p−
r , q−

s } are the expansion coefficients. Such coefficients are determined from
the definition (5) of the FPT(−) via G N (z−1)Q−

K (z−1) = P−
K−1(z

−1). This gives a
system of linear equations for {q−

s } and a closed, analytical expression for {p−
r } in

terms of {q−
s } and {cn}. One of several representations of the FPT(−) is given by the

Heaviside partial fractions:

P−
K−1(z

−1)

Q−
K (z−1)

=
K∑

k=1

d−
k

z−1 − z−1
k,Q

. (7)
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Quantity z−1
k,Q is the kth zero of the characteristic polynomial equation:

Q−
K (z−1) = 0. (8)

This yields the nodal frequencies ω−
k,Q = (i/τ) ln z−1

k,Q . Complex amplitudes {d−
k }

are given by an analytical expression as the Cauchy residue of P−
K−1(z

−1)/Q−
K (z−1)

taken at z−1 = z−1
k,Q . In the case of non-degenerate (non-coincident) simple zeros of

Eq. (8), we have:

d−
k = P−

K−1(z
−1
k,Q)

Q−
K

′
(z−1

k,Q)
, Q−

K
′
(z−1) = dQ−

K (z−1)

dz−1 , (9)

where Q−
K

′
(z−1) �= 0. Overall, as we see, the FPT(−) requires two main numerical

operations to obtain the exact solution of the quantification problem. This reduces to
solving a single system of linear equations for the expansion coefficients {q−

s } of the
numerator polynomial Q−

K (z−1) and rooting the characteristic polynomial equation
(8). An additional operation is needed to distinguish genuine from spurious resonances.
This is provided by roots {z−1

k,P } of the characteristic equation for the numerator poly-
nomial:

P−
K−1(z

−1) = 0. (10)

A pole-zero coincidence or confluence occurs when the solutions of Eqs. (8) and (10)
are equal to each other via:

z−1
k,Q = z−1

k,P . (11)

In this case, the associated amplitude d−
k from (9) is automatically zero:

d−
k = 0 for z−1

k,Q = z−1
k,P (Froissart doublet) , (12)

as per P−
K−1(z

−1
k,Q) = P−

K−1(z
−1
k,P ) = 0. This is classified as a spurious resonance

which is comprised of a pole-zero pair called a Froissart doublet [1]. The most promi-
nent feature of spurious resonances is their marked instability against change, such
as the number of signal points, the order of the polynomials, the noise level, etc.
With a significant noise level, the exact pole-zero coincidence ωk,Q = ωk,P may
become only an approximation ωk,Q ≈ ωk,P for some resonances, whereas for the
other resonances even such approximate confluences might disappear altogether thus
yielding ωk,Q �= ωk,P . Genuine resonances also have ωk,Q �= ωk,P , but neverthe-
less they are unequivocally identified by their manifestly robust stability against the
same mentioned perturbations that produce considerable alterations of parameters in
spurious resonances. This possibility of differentiating between genuine and spurious
resonances by their stability is unique to the fast Padé transform. Once all the spurious
resonances are determined in this way, they could be discarded from the total number
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of reconstructed resonances without any risk of throwing away any physical infor-
mation. Such a concept is called the denoising Froissart filter (DFF). After applying
the DFF, all the remaining spectral structures will be the genuine resonances with
the parameters that must necessarily be identical to the true parameters of physical
resonances that are present in the input data. All of these discussed characteristics will
be demonstrated in the next section.

4 Results and discussion

The analysis in this section is carried out using MRS time signals given by sums
of damped complex harmonics from Eq. (1). The focus of the present application is
on MRS data from malignant ovarian cyst fluid. To illustrate the practical usefulness
and the overall performance of the fast Padé transform, our computations will be
performed with the help of the MRS time signal encoded in Ref. [40], where some
twelve metabolites were estimated in the frequency interval 1–6 ppm. Therefore, for
the latter frequency range, we shall set K = 12 in Eq. (1). The time signals from
Ref. [40] were recorded using a static magnetic field strength B0 = 14.1 T (Larmor
frequency νL of 600 MHz) and a bandwidth of 6667 Hz. The sampling time τ is the
reciprocal of the bandwidth. The total signal length N was selected in Ref. [40] to
satisfy the Fourier resolving power �ωmin = 2π/T, where T is the total acquisition
time, T = Nτ. This would yield a spectral resolution of ∼0.02 ppm, which should
split apart isoleucine and valine, the two most tightly spaced metabolites, separated
by 0.019 ppm. To this end, the closest integer in the composite form 2m for the time
signal length required by the FFT is N = 215 = 32768 (32 MB).

As mentioned, the FPT resolution is not predetermined by the Fourier grid so that, in
principle, a much shorter time signal length than in Ref. [40] could suffice. Therefore,
we sampled our time signals using only N = 1024 (1 MB), which is 32 times shorter
than the FID from Ref. [40]. In our computations, we used both the FPT(−) and FPT(+)

to cross-check all the reconstructions. However, for brevity, only the results from the
FPT(−) will be reported in this work using the diagonal form P−

K (z−1)/Q−
K (z−1) for

the complex Padé spectrum. The procedure of quantification is as follows. The input
data for the spectral parameters {ωk, dk} were derived from those close to the values
reported in Ref. [40]. We used the quotients 2{Cmet/Cref} for twelve metabolites for
cancerous ovarian cyst fluid obtained from twelve patients [40]. Here, {Cmet} are the
metabolite median concentrations expressed in μM/L ww, where ww stands for wet
weight. The reference concentration Cref was taken as the largest concentration which
is 6536μM/L ww for lactate (Lac) [40]. The phases from the complex amplitudes dk

were all set to zero, so that every amplitude dk is, in fact, real, i.e., dk = |dk |. The
line widths, that are related to {Im(νk)} of the complex fundamental frequencies {νk}
were estimated in Ref. [40] to be approximately 1 Hz. Here, νk is the linear frequency,
νk = ωk/(2π). The chemical shifts, that are given by {Re(νk)}, as the positions of the
nodal resonances (peaks) for the twelve metabolites are chosen to be near those from
Ref. [40], but with an extended precision to three decimal places.

The input data for the present study with all the parameters and assignments for
the 12 genuine metabolites are listed in Table 1. Using these parameters, the FID
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Table 1 Input parameters of a simulated FID reminiscent of the in vitro MRS time signal encoded in
Ref. [40] at B0 ≈ 14.1 T (Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid

INPUT DATA: SPECTRAL PARAMETERS, CONCENTRATIONS and METABOLITE ASSIGNMENTS
Phases of all the input harmonics are equal to zero: φk = 0 (k = 1, . . ., K; K = 12)

no
k (Metabolite # k) Re(νk) (ppm) Im(νk) (ppm) |dk | (au) Ck(μM/L) Mk (Assignment)

1 1.023 0.0008 0.024 78 Isoleucine (Iso)

2 1.042 0.0008 0.121 395 Valine (Val)

3 1.331 0.0008 0.076 248 Threonine (Thr)

4 1.412 0.0008 2.000 6536 Lactate (Lac)

5 1.513 0.0008 0.179 585 Alanine (Ala)

6 1.721 0.0008 0.150 490 Lysine (Lys)

7 2.132 0.0008 0.019 62 Methionine (Met)

8 2.473 0.0008 0.253 827 Glutamine (Gln)

9 3.052 0.0008 0.020 65 Creatine (Cr)

10 3.131 0.0008 0.024 78 Creatinine (Crn)

11 3.192 0.0008 0.013 42 Choline (Cho)

12 5.223 0.0008 0.080 261 Glucose (Glc)

Hereafter, labels Re and Im are used to denote, respectively, the real and imaginary parts of a given complex
number. As such, Re(νk ) and Im(νk ) are the real and imaginary parts of complex fundamental frequency
νk (both expressed in the dimensionless units, parts per million, ppm). Absolute values |dk | of amplitudes
dk are given in arbitrary units (au). Concentrations Ck of metabolites are in μM/L of wet weight (ww) of
the sample. Metabolites themselves are denoted by Mk and their assignments are listed in the last column

is sampled with the help of Eq. (1) with N = 1024. We first employ the FPT(−)

to solve the quantification problem for the noise-free time signal. Similarly to Ref.
[11], the presently retrieved spectral parameters are found to be in exact agreement
with Table 1, including all the decimals, by using barely 64 signal points, which is
a very short partial signal length, NP = N/16 = 64. Convergence to the known
exact parameters remains fully stable for any longer partial signal lengths NP ≤ N .

Employing the retrieved parameters, we generated the Padé-based absorption total
shape spectra that are shown in Fig. 1 at two partial signal lengths, NP = N/16 = 64
and NP = N/4 = 256. It is seen on the right column of Fig. 1 that the spectra
from the FPT remain completely unaltered despite a large difference in truncations
when passing from NP = N/4 = 256 (panel (iii)) to NP = N/16 = 64 (panel
(iv)). Specifically, the positions, heights and line widths of all the genuine resonances
are identical when going from the longer (NP = N/4 = 256) to a much shorter
(NP = N/16 = 64) fraction of the full FID, as clear from the top and bottom panels
(iii) and (iv) on the right column in Fig. 1. This is in accordance with the mentioned
exact reconstructions of all the spectral parameters for the twelve genuine resonances.
By comparison, the FFT from the left column of Fig. 1 yields only rough, completely
uninformative spectra at both signal lengths NP = N/16 = 64 and NP = N/4 = 256.

Next, we consider the noise-corrupted input data. To this end we add the complex-
valued random zero-mean Gauss-distributed white noise of a prescribed level to the
noiseless FID. The selected noise levels in this work are 10 and 25 times higher
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Fig. 1 Comparison of Fourier (left column, FFT) and Padé processing (right column, FPT) of a noise-free
MRS time signal synthesized in accordance with the encoded FID from malignant ovarian cyst data of
Ref. [40]. Hereafter, abscissa represents chemical shifts, as dimensionless linear frequencies ν, given in
parts per million (ppm), ordinates are the real parts of complex-valued spectra in arbitrary units (au) and
νL is the Larmor frequency. Convergence of the total absorption shape spectrum in the fast Padé transform,
FPT, on the right column is attained with NP = N/16 = 64 signal points (panel (iv)) and remains stable
for longer signal lengths, as illustrated in panel (iii) at NP = 256. The fast Fourier transform, FFT, on the
left column yields only rough and totally uninformative spectra at these same partial signal lengths NP.

The Fourier spectra at NP = 256 (panel (i)) and NP = N/16 = 64 (panel (ii)) differ markedly from each
other, with the prominent peak at frequency 1.5 ppm broadened and attenuated in the latter. Convergence
with Fourier processing requires 32768 signal points (32 MB). This is some formidable 512 and 128 times
longer input data set compared to the time signal length used in Padé processing from panels (iv) and (iii),
respectively

than that in Ref. [11] in which the standard deviation of noise was σ = 0.01156
RMS, where RMS is the root-mean-square of the noise-free time signal (RMS =
1.6472). The reconstructed parameters for the noise-corrupted time signal with σ =
0.1156 RMS are shown in Tables 2, 3, 4 and 5, for 3 partial signal lengths NP =
256(N/4), 512(N/2), 910 as well as for the full FID (N = 1024). Three of them
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Table 2 Padé-based reconstruction of spectral parameters and concentrations of metabolites using a noise-
corrupted simulated FID reminiscent of the in vitro MRS time signal encoded in Ref. [40] at B0 ≈ 14.1 T
(Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid

RECONSTRUCTION of SPECTRAL PARAMETERS and CONCENTRATIONS in FPT(−):
NOISY INPUT DATA
Noise: σ = 0.1156 RMS; signal length: NP = N/4 = 256, N = 1024

no
k (Metabolite # k) Re(ν−

k ) (ppm) Im(ν−
k ) (ppm) |d−

k | (au) C−
k (μM/L) M−

k (assignment)

– −0.073 0.0433 0.001 3 Spurious

– 0.688 0.0341 0.001 3 Spurious

1 1.023 0.0009 0.025 82 Isoleucine (Iso)

2 1.042 0.0008 0.120 392 Valine (Val)

– 1.167 0.0708 0.001 3 Spurious

3 1.331 0.0008 0.076 248 Threonine (Thr)

4 1.412 0.0008 2.000 6536 Lactate (Lac)

5 1.513 0.0008 0.179 585 Alanine (Ala)

6 1.721 0.0008 0.150 490 Lysine (Lys)

– 1.813 0.0257 0.001 3 Spurious

– 1.840 0.3681 0.031 101 Spurious

– 2.131 0.2656 0.029 95 Spurious

7 2.132 0.0008 0.019 62 Methionine (Met)

– 2.339 0.1655 0.011 36 Spurious

8 2.473 0.0008 0.253 827 Glutamine (Gln)

9 3.052 0.0008 0.020 65 Creatine (Cr)

10 3.131 0.0008 0.024 78 Creatinine (Crn)

11 3.192 0.0009 0.014 46 Choline (Cho)

– 3.396 0.0257 0.001 3 Spurious

– 4.242 0.2061 0.006 20 Spurious

– 4.543 0.0398 0.003 10 Spurious

– 4.572 0.0536 0.005 16 Spurious

12 5.223 0.0008 0.080 261 Glucose (Glc)

Added to the noiseless time signal, built from the input parameters given in Table 1, is the complex-valued
zero-mean random Gaussian-distributed noise of level σ = 0.1156 RMS, where RMS is root-mean-square
of the noise-free FID. Partial signal length employed is NP = N/4 = 256, where N is the total length of
the FID (N = 1024)

(NP = 256, 512, 1024) satisfy the FFT-required relation NP = 2m or NP = N/M
where M = 4, 2, 1 and m = 8, 9, 10 (Tables 2, 3, 5). Such a type of truncation is
only optional in the FPT where any positive integer can be used for the partial signal
length NP as shown in Table 4 where NP = 910. The degree KT of the diagonal
fast Padé transform PKT/QKT is equal to NP/2 for any fixed partial FID length thus
yielding some NP/2 reconstructed metabolites. These include the K = KG genuine
constituents of the FID from Eq. (1) where K = 12. The difference KT−KG represents
the number of the spurious resonances since they are absent from the noiseless input
data given in Table 1. As emphasized, the main identifying signature of spurious
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Table 3 Padé-based reconstruction of spectral parameters and concentrations of metabolites using a noise-
corrupted simulated FID reminiscent of the in vitro MRS time signal encoded in Ref. [40] at B0 ≈ 14.1 T
(Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid

RECONSTRUCTION of SPECTRAL PARAMETERS and CONCENTRATIONS in FPT(−): NOISY
INPUT DATA
Noise: σ = 0.1156 RMS; signal length: NP = N/2 = 512, N = 1024

no
k (Metabolite # k) Re(ν−

k ) (ppm) Im(ν−
k ) (ppm) |d−

k | (au) C−
k (μM/L) M−

k (assignment)

– −0.861 0.0307 0.002 7 Spurious

– −0.668 0.1007 0.006 20 Spurious

– −0.546 0.0426 0.003 10 Spurious

– −0.366 0.1202 0.005 16 Spurious

– 0.289 0.0337 0.002 7 Spurious

– 0.423 0.0427 0.002 7 Spurious

– 0.478 0.0308 0.002 7 Spurious

– 0.827 0.0642 0.006 20 Spurious

– 0.884 0.0198 0.003 10 Spurious

– 0.916 0.0245 0.003 10 Spurious

1 1.023 0.0008 0.024 78 Isoleucine (Iso)

2 1.042 0.0008 0.121 395 Valine (Val)

3 1.331 0.0008 0.076 248 Threonine (Thr)

4 1.412 0.0008 2.000 6536 Lactate (Lac)

5 1.513 0.0008 0.179 585 Alanine (Ala)

6 1.721 0.0008 0.150 490 Lysine (Lys)

– 1.733 0.0484 0.004 13 Spurious

– 1.761 0.2202 0.025 82 Spurious

– 2.049 0.0639 0.004 13 Spurious

7 2.132 0.0008 0.019 62 Methionine (Met)

– 2.183 0.1674 0.034 111 Spurious

– 2.275 0.0781 0.006 20 Spurious

– 2.422 0.2764 0.035 114 Spurious

8 2.473 0.0008 0.253 827 Glutamine (Gln)

9 3.052 0.0008 0.020 65 Creatine (Cr)

10 3.131 0.0008 0.024 78 Creatinine (Crn)

11 3.192 0.0009 0.013 42 Choline (Cho)

– 3.379 0.0699 0.005 16 Spurious

– 3.597 0.0437 0.002 7 Spurious

– 3.988 0.6300 0.022 72 Spurious

– 5.058 0.0378 0.002 7 Spurious

– 5.146 0.0190 0.001 3 Spurious

12 5.223 0.0008 0.080 261 Glucose (Glc)

Added to the noiseless time signal, built from the input parameters given in Table 1, is the complex-valued
zero-mean random Gaussian-distributed noise of level σ = 0.1156 RMS, where RMS is root-mean-square
of the noise-free FID. Partial signal length employed is NP = N/2 = 512, where N is the total length of
the FID (N = 1024)
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Table 4 Padé-based reconstruction of spectral parameters and concentrations of metabolites using a noise-
corrupted simulated FID reminiscent of the in vitro MRS time signal encoded in Ref. [40] at B0 ≈ 14.1 T
(Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid

RECONSTRUCTION of SPECTRAL PARAMETERS and CONCENTRATIONS in FPT(−): NOISY
INPUT DATA
Noise: σ = 0.1156 RMS; signal length: NP = 910, N = 1024

no
k (Metabolite # k) Re(ν−

k ) (ppm) Im(ν−
k ) (ppm) |d−

k | (au) C−
k (μM/L) M−

k (assignment)

– −0.554 0.0513 0.003 10 Spurious

– −0.024 0.0499 0.002 7 Spurious

– −0.002 1.3796 0.004 13 Spurious

– 0.376 0.0604 0.001 3 Spurious

– 0.639 0.0473 0.003 10 Spurious

1 1.023 0.0008 0.024 78 Isoleucine (Iso)

2 1.042 0.0008 0.121 395 Valine (Val)

3 1.331 0.0008 0.076 248 Threonine (Thr)

4 1.412 0.0008 2.000 6536 Lactate (Lac)

5 1.513 0.0008 0.179 585 Alanine (Ala)

– 1.678 0.0292 0.001 3 Spurious

– 1.713 0.0076 0.001 3 Spurious

6 1.721 0.0008 0.150 490 Lysine (Lys)

7 2.132 0.0008 0.019 62 Methionine (Met)

– 2.445 0.6287 0.007 23 Spurious

8 2.473 0.0008 0.253 827 Glutamine (Gln)

– 2.977 0.0122 0.001 3 Spurious

– 3.005 0.0124 0.001 3 Spurious

– 3.025 0.2106 0.013 42 Spurious

9 3.052 0.0008 0.020 65 Creatine (Cr)

– 3.056 0.0194 0.002 7 Spurious

10 3.131 0.0008 0.024 78 Creatinine (Crn)

11 3.192 0.0008 0.013 42 Choline (Cho)

– 3.196 0.0210 0.001 3 Spurious

– 3.491 0.0271 0.002 7 Spurious

– 4.160 0.0387 0.004 13 Spurious

– 4.169 0.0223 0.002 7 Spurious

– 4.325 0.0167 0.001 3 Spurious

– 4.365 0.0571 0.005 16 Spurious

– 4.782 0.0136 0.002 7 Spurious

– 5.187 0.0644 0.005 16 Spurious

12 5.223 0.0008 0.080 261 Glucose (Glc)

Added to the noiseless time signal, built from the input parameters given in Table 1, is the complex-valued
zero-mean random Gaussian-distributed noise of level σ = 0.1156 RMS, where RMS refers to the root-
mean-square of the noise-free FID. The number of signal points employed is NP = 910 out of N = 1024,

which is total length of the FID
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Table 5 Padé-based reconstruction of spectral parameters and concentrations of metabolites using a noise-
corrupted simulated FID reminiscent of the in vitro MRS time signal encoded in Ref. [40] at B0 ≈ 14.1 T
(Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid

RECONSTRUCTION of SPECTRAL PARAMETERS and CONCENTRATIONS in FPT(−): NOISY
INPUT DATA
Noise: σ = 0.1156 RMS; signal length: NP = N = 1024

no
k (Metabolite # k) Re(ν−

k ) (ppm) Im(ν−
k ) (ppm) |d−

k | (au) C−
k (μM/L) M−

k (assignment)

– −0.659 0.0108 0.001 3 Spurious

– −0.574 0.1078 0.006 20 Spurious

– −0.439 0.4570 0.020 65 Spurious

– −0.100 0.0610 0.005 16 Spurious

– 0.338 0.0589 0.002 7 Spurious

– 0.516 0.0566 0.004 13 Spurious

– 0.579 0.0115 0.001 3 Spurious

– 0.608 0.0222 0.004 13 Spurious

– 0.608 0.0075 0.001 3 Spurious

1 1.023 0.0008 0.024 78 Isoleucine (Iso)

2 1.042 0.0008 0.121 395 Valine (Val)

– 1.236 0.0631 0.002 7 Spurious

3 1.331 0.0008 0.076 248 Threonine (Thr)

– 1.392 0.0130 0.001 3 Spurious

– 1.404 0.0475 0.004 13 Spurious

4 1.412 0.0008 2.000 6536 Lactate (Lac)

5 1.513 0.0008 0.179 585 Alanine (Ala)

– 1.713 0.0075 0.002 7 Spurious

6 1.721 0.0008 0.150 490 Lysine (Lys)

– 1.730 0.0306 0.003 10 Spurious

– 1.948 0.1151 0.005 16 Spurious

7 2.132 0.0008 0.019 62 Methionine (Met)

– 2.173 0.0385 0.002 7 Spurious

8 2.473 0.0008 0.253 827 Glutamine (Gln)

– 2.737 0.0206 0.001 3 Spurious

– 2.917 0.0401 0.002 7 Spurious

– 2.972 0.0152 0.001 3 Spurious

9 3.052 0.0008 0.020 65 Creatine (Cr)

10 3.131 0.0008 0.024 78 Creatinine (Crn)

11 3.192 0.0008 0.013 42 Choline (Cho)

– 3.873 0.1292 0.003 10 Spurious

– 4.064 0.0256 0.001 3 Spurious

– 4.846 0.0423 0.002 7 Spurious

– 4.866 0.0108 0.001 3 Spurious
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Table 5 continued

RECONSTRUCTION of SPECTRAL PARAMETERS and CONCENTRATIONS in FPT(−): NOISY
INPUT DATA
Noise: σ = 0.1156 RMS; signal length: NP = N = 1024

no
k (Metabolite # k) Re(ν−

k ) (ppm) Im(ν−
k ) (ppm) |d−

k | (au) C−
k (μM/L) M−

k (assignment)

– 4.965 0.1664 0.011 36 Spurious

– 5.206 0.1528 0.010 33 Spurious

12 5.223 0.0008 0.080 261 Glucose (Glc)

Added to the noiseless time signal, built from the input parameters given in Table 1, is the complex-valued
zero-mean random Gaussian-distributed noise of level σ = 0.1156 RMS, where RMS is root-mean-square
of the noise-free FID. The full signal length N = 1024 is employed

resonances is their pronounced instability manifested by changing e.g. NP, noise
level, etc. This is evident from Tables 2, 3, 4 and 5 for 4 signal lengths (NP =
256, 512, 910, 1024).

Among all the reconstructions, some 116, 244, 443, 500 spurious resonances are
found at NP = 256, 512, 910, 1024, respectively. To avoid displaying such large num-
bers of data in Tables 2, 3, 4 and 5, only small fractions are given for these parameters
of spurious resonances with a cut-off value |dk | ≥ 0.001 for the absolute value of the
found amplitudes. As seen in Table 1, this is by about an order of magnitude smaller
than the associated lowest value of |dk | among genuine resonances, corresponding to
choline having |dk | = 0.013. With the threshold of |dk | ≥ 0.001 for retaining all the
retrieved resonances, Tables 2, 3, 4, 5 show that there are still some 11, 21, 20, 25
remaining spurious peaks at NP = 256, 512, 910, 1024, respectively. Just like all the
other found unphysical data from the whole Nyquist range (−1, 10) ppm, the spurious
resonances reported in Tables 2, 3, 4 and 5 markedly alter their parameters when chang-
ing the partial signal length according to NP = 256, 512, 910, 1024, respectively.

The proof-of-principle of the concept of the denoising Froissart filter, or the DFF,
is given in Figs. 2, 3, 4, 5 and 6. Figure 2 compares the FPT-based reconstructions
using the noiseless and noisy (σ = 0.01156 RMS) input data as in Ref. [11]. Therein,
panels (i) and (ii) show the Argand plots for noise-corrupted and noise-free input data,
respectively. Panel (iii) of the same Fig. 2 displays the reconstructed absolute values
of the amplitudes for the noisy FID. At all the three panels (i)–(iii), also depicted
are the exact noiseless input parameters. It can be seen that despite the presence of
noise, the FPT is able to reconstruct exactly the noiseless input parameters. This
amounts to noise reduction by the fast Padé transform. Both spectral poles and zeros
are shown on panels (i) and (ii). Froissart doublets are clearly seen by the exact
pole-zero coincidences in these two panels. Denser noiseless spurious resonances
appear to be quite regularly aligned in a chain on panel (ii). This is not the case with
the corresponding denser noisy spurious resonances that are misaligned as they are
perturbed by noise of level σ = 0.01156 RMS. Precise pole-zero confluences yield
exactly zero-valued amplitudes and this is evidenced on panel (iii) of Fig. 2. Therein,
the auxiliary horizontal line at the zero value of the ordinate crosses exactly through
the centers of open circles for all the spurious amplitudes. The absolute values of the
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Fig. 2 Separation of genuine from spurious resonances for noise-free and noise-corrupted FID of the same
partial signal length. Padé-based reconstruction of spectral frequencies and absolute values of amplitudes
using a simulated FID reminiscent of the in vitro MRS time signal encoded in Ref. [40] at B0 ≈ 14.1 T
(Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid. Partial signal length employed is
NP = N/8 = 128, where N is the total length of the FID (N = 1024). Panel (ii) is for noise-free time
signal, whereas panel (i) is for noise-corrupted FID. To the noiseless time signal synthesized with the input
parameters from Table 1 added is the complex-valued zero-mean random Gaussian-distributed noise of
level σ = 0.01156 RMS, where RMS is root-mean-square of the noise-free FID

reconstructed amplitudes from panel (iii) are explicitly drawn for noisy input data, but
the same results are obtained by using the noiseless time signal.
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Fig. 3 Separation of genuine from spurious resonances. Padé-based reconstruction of spectral frequencies
and absolute values of amplitudes using a simulated noisy FID reminiscent of the in vitro MRS time signal
encoded in Ref. [40] at B0 ≈ 14.1 T (Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid.
Partial signal lengths employed are NP = N/8 = 128 and NP = N/6.4 = 160 where N is the total length
of the FID (N = 1024). To the noiseless time signal synthesized with the input parameters from Table 1
added is the complex-valued zero-mean random Gaussian-distributed noise of levels σ = 0.1156 RMS and
σ = 0.01156 RMS on panels (i) and (ii), respectively, where RMS is root-mean-square of the noise-free
FID

Figure 3 compares the reconstructions by the FPT employing two non-zero noise
levels that differ by a factor of ten, σ = 0.01156 RMS and σ = 0.1156 RMS. We
used two different partial signal lengths, one satisfying the Fourier-prescribed form
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Fig. 4 Envelope stability test for the same noise level and two different partial signal lengths. Padé-based
reconstruction of spectral envelopes as well as of chemical shifts and concentrations of metabolites using
a simulated noisy FID reminiscent of the in vitro MRS time signal encoded in Ref. [40] at B0 ≈ 14.1 T
(Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid. The numbers of signal points employed
are NP = 910 and NP = 950 out of N = 1024, which is total length of the FID. To the noiseless time
signal synthesized with the input parameters from Table 1 added is the complex-valued zero-mean random
Gaussian-distributed noise of level σ = 0.1156 RMS, where RMS is root-mean-square of the noise-free
FID

2m with m = 5 i.e. NP = N/8 = 128 and the other NP = 160 which corresponds
to a truncation by a factor of 6.4 (NP = 160 = N/6.4). For both noise levels, the
fast Padé transform reconstructs exactly all the noiseless input parameters. Spurious
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Fig. 5 Envelope stability test for two different noise levels and two different partial signal lengths. Padé-
based reconstruction of spectral envelopes as well as of chemical shifts and concentrations of metabolites
using a simulated noisy FID reminiscent of the in vitro MRS time signal encoded in Ref. [40] at B0 ≈ 14.1
T (Larmor frequency, νL = 600 Hz) from malignant ovarian cyst fluid. The numbers of signal points
employed are NP = 740 and NP = 910 out of N = 1024, which is total length of the FID. To the noiseless
time signal synthesized with the input parameters from Table 1 added is the complex-valued zero-mean
random Gaussian-distributed noise of levels σ = 0.1156 RMS and σ = 0.2890 RMS on panels (i) and (ii),
respectively, where RMS is root-mean-square of the noise-free FID

resonances in the Argand plots look more chaotic on panel (i) for σ = 0.1156 RMS
than on panel (ii) for σ = 0.01156 RMS. Moreover, with the tenfold increase of the
noise level on panel (i), some of spurious resonances do not exhibit exact pole-zero
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DENOISING FROISSART FILTER for COMPLETE ELIMINATION of UNSTABLE SPECTRAL STRUCTURES

Fig. 6 Denoising (noise elimination) from noise-corrupted envelope. Padé-based reconstruction of spectral
envelopes as well as of chemical shifts and concentrations of metabolites using a simulated noisy FID
reminiscent of the in vitro MRS time signal encoded in Ref. [40] at B0 ≈ 14.1 T (Larmor frequency,
νL = 600 Hz) from malignant ovarian cyst fluid. The number of signal points employed is NP = 910 out
of N = 1024, which is the total length of the FID. To the noiseless time signal synthesized with the input
parameters from Table 1 added is the complex-valued zero-mean random Gaussian-distributed noise of level
σ = 0.1156 RMS on panel (i), where RMS is root-mean-square of the noise-free FID. Panel (ii) shows
the denoised spectrum obtained by binning the noisy output data through retaining stable and discarding
unstable resonances via the denoising Froissart filter

confluence or such a coincidence does not occur at all. This is also confirmed on
panel (iii) where some of the spurious amplitudes are not zero, as clearly shown by
the auxiliary horizontal line on the zero height. In particular, it is seen that one of the
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spurious resonances near 5.8 ppm has nearly the same height as genuine resonance
at 3.192 ppm (Cho) and the question arises as to how these two can be distinguished.
Such questions are vital when dealing with encoded time signals for which the true
peak parameters are unknown and an objective criterion must be used to disentangle
the physical and unphysical information.

In Figs. 4, 5 and 6 we illustrate the stability test which answers these questions. Thus,
Fig. 4 shows the absorption total shape spectra at the same noise level (σ = 0.1156
RMS), but at two different partial signal lengths (NP = 910, 950). It is seen in Fig. 4
that at this noise level the reconstructed chemical shifts and concentrations of all the
12 genuine resonances are identical to the corresponding noiseless input data. This
implies stability of the retrieved physical resonances. Such a stability is robust since it
persists despite the tenfold increase of noise relative to σ = 0.01156 RMS from Ref.
[11]. In contradistinction, by a relatively mild increase in the partial signal length from
NP = 910 to NP = 950, all the remaining spectral structures are seen to fluctuate on
the background level due to the induced changes in the underlying parameters (peak
positions, widths, heights, phases). Due to this noticeable instability, the latter spectral
structures are unphysical, extraneous, i.e. spurious.

Figure 5 shows an alternative stability test where both the partial signal length and
the noise level are simultaneously varied. On panel (i) of this figure, we use NP = 910
and σ = 0.1156, whereas panel (ii) corresponds to NP = 740 and σ = 0.2890 with
the latter noise level being 2.5 times in excess of the former. Despite this significant
increase in the noise level, as also evident on the background in panel (ii), the fast
Padé transforms is still seen to be capable of exact retrieval of all the 12 noiseless
chemical shifts and concentrations for genuine metabolites. The remaining spectral
structures on panel (ii) are completely different from the corresponding background
on panel (i) in every aspect and this instability identifies them as spurious resonances
in agreement with the conclusion from Fig. 4 as well as from Ref. [13].

The performed error analysis based on the test of stability of all the reconstructed
parameters as well as constancy of the resulting spectral shapes in the whole Nyquist
range (a part of which was illustrated in the tables and figures) enables an unequivocal
separation of the true from the false information in the analyzed data. This constitutes
the concept of signal-noise separation or SNS. With the disentangled genuine from
spurious resonances, the output data can be binned into the physical and unphysical
groups or sectors. Thus, by retaining the physical group and discarding the unphys-
ical sector of the reconstructed data, exact reconstruction of the noiseless input data
becomes, in principle, possible despite considerable perturbation by complex random
zero-mean Gaussian noise of the standard deviation σ = 0.01156, 0.1156, 0.2890
RMS which was the subject of the effected checks. In other words, if this bin-
ning of the output list is explicitly carried out, it would be expected that we are
finally left only with the true, noiseless input parameters and the corresponding
denoised absorption spectrum. Indeed, this is the case, as exemplified in Fig. 6 for
the noise-corrupted FID with standard deviation σ = 0.1156. Panel (i) of Fig. 6
shows the output noisy spectrum constructed by using all the 455 found resonances
(Ktot = 455 = NP/2, NP = 910) in the whole Nyquist interval (−1, 10) ppm. Exclu-
sion of the 443 unstable resonances as spurious yields the 12 stable resonances, that
are the genuine content of the input data, effectively amounts to denoising the noisy
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spectrum from panel (i). The ensuing denoised spectrum is shown on panel (ii) in Fig. 6
and is seen as indistinguishable from the associated noiseless spectrum of the FPT from
Fig. 1.

4.1 Clinical implications of these most recent findings for ovarian cancer

In the presence of some 10–25 higher noise levels than in Ref. [11], the FPT provided
excellent resolution and exact reconstruction of all physical metabolite concentrations
characteristic of malignant ovarian cyst fluid. In vivo MRS has been envisioned as
the potential method of choice for early stage ovarian cancer detection. However, this
would require overcoming the barriers obstructing the acquisition of high quality time
signals and subsequent trustworthy analysis of spectra. Molecular imaging through
MRS could, therefore, have much broader applications in screening surveillance for
early ovarian cancer detection, particularly among women at high risk. This possibility
is attractive because there is no exposure to ionizing radiation. These results strongly
suggest that Padé-optimization will be a critical step towards improving the diagnostic
accuracy of MRS for ovarian cancer. Better outcomes are thereby anticipated for
women afflicted with this malignancy.

4.2 Broader significance for oncology

Magnetic resonance spectroscopy is a crucial modality for oncology [16–23,33,34,
36,41,42]. It is, therefore, essential to overcome the problems hindering more wide-
spread application of MRS in cancer diagnostics and care of patients with cancer. As
explained, more advanced signal processing methods are vital to these efforts and the
fast Padé transform, FPT, is the signal processing method of choice [1–15].

Application of the FPT to in vivo MRS signals encoded from the brain on high
field (3, 4, 7 T) and clinical (1.5 T) scanners shows that over 20 metabolite concen-
trations can be reliably determined. This is to be compared to at most 5 metabolite
concentrations retrieved by the “FFT alongside fitting” approaches [2,3,13]. Such
findings are expected to have major implications for brain tumor diagnostics, and
post-therapeutic patient care [14,26]. In particular, the improved image-guided target
definition provided by Padé-optimized MRS will be essential in combination with
better input to dose-planning systems for RT, as provided by our recently introduced
Padé linear-quadratic (PLQ) model for cell response to radiation damage [43–45]. The
link between these two areas has been suggested in Ref. [45], where it was noted that
cell survival probabilities could be used to assess changes in metabolite concentra-
tions post-RT as a method for delineating the target volume for patients who undergo
re-irradiation.

The potential advantages of Padé-optimization are also clearly demonstrated for
MRS data from prostate, breast and ovarian cancer. Previously, in each of these areas,
the diagnostic yield of MRS had been severely limited by reliance upon the “FFT
together with fitting” approaches. Our results [4,7,13,14] illustrate that the FPT can
resolve and exactly quantify a large number of overlapping resonances, including
multiplets of metabolites that distinguish normal glandular prostate, normal stromal
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prostate and prostate cancer. Thus, MRS with the accompanying Padé quantifica-
tion applied to prostate cancer is particularly important for diagnostic enhancement,
because of the current dilemmas surrounding prostate cancer screening (e.g. cut-points
of prostate specific antigen, PSA), clinical decision-making for high- versus low-risk
prostate cancer, identifying sites for biopsy, as well as for targeting dominant intra-
prostatic lesions, where an escalated radiation dose might be delivered with better
sparing of the surrounding normal tissue [14,42]. Here again, this is expected to be
particularly advantageous in conjunction with better input to dose-planning systems
for RT, as provided by the PLQ model [43–45].

The results from Refs. [4,8,9,13] for MRS data from the cancerous breast, fibroade-
noma and normal breast, showed the advantages of the Padé-optimization, especially
for areas of high spectral density. The FPT resolves and exactly quantifies extremely
closely-lying resonances, including phosphocholine, a marker of malignant transfor-
mation of the breast. This line of investigation is being continued by ourselves with in
vivo data from benign and malignant breast tissue. We anticipate that Padé-optimized
MRS will reduce the false positive rates of MR-based modalities and further improve
their sensitivity. Once this is achieved, and since MR entails no ionizing radiation, new
possibilities for screening/early detection will open up, especially for risk groups. For
example, Padé-optimized MRS could be used with greater surveillance frequency
among younger women at high breast cancer risk. Surveillance after breast cancer
treatment could also be more frequent, as well as more effective with Padé-optimized
MRS.

The FPT applied to benign and malignant ovarian fluid, dramatically improved
resolution compared to FFT-based processing and provided highly accurate determi-
nation of key metabolite concentrations for identifying ovarian cancer. The present
results indicate that via Padé-processing, excellent resolution with exact determination
of metabolite concentrations can be achieved for ovarian cancer MRS time signals in
the presence of noise. These features of the FPT are anticipated to be of critical benefit
to ovarian cancer diagnostics by MRS, particularly for early detection, a goal which
has been elusive, and achievement of which would confer a major survival advantage.

An important next step is to perform comparative analysis between clinical (1.5 T)
scanners and higher-field MR scanners. This has a significant practical side, including
economic, since 1.5 T scanners are the most abundant in hospitals worldwide, due to
their price which is much lower than for stronger magnets. For far too long, expe-
rience originating in analytical chemistry has been exported to medical diagnostics
through MR via focusing mainly on hardware improvements by increasing magnetic
field strength with the aim of improving resolution. This strategy has not met with
palpable success in MRS, because the corresponding advances in signal processing
were precluded by virtually exclusive reliance upon the conventional data analytic
methods with the FFT and fitting.

Instead, we are pursuing a less frequently traveled road by maximally exploring
the alternative avenue of gaining resolution improvement in MRS with ordinary 1.5 T
scanners by means of better equipped mathematics in optimization of signal process-
ing. This is a “quantum leap” which is in the realm of new wider horizons, as it sets
the researcher’s mind on the promising pathway of mathematical modeling using, e.g.,
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our methodology of the fast Padé transform which could be widely implemented at
the most abundant MR scanners (1.5 T).

Thus far, MRS has made great strides by relying upon a mere handful of metabolites,
or even a single metabolite, e.g., total choline for breast cancer. This severely restricted
metabolite window stems directly from the limitations of the FFT combined with fit-
ting and other related phenomenological approaches with adjustable parameters. It is
expected that the diagnostic yield of MRS in oncology will be significantly enhanced
by extracting reliable information about many more metabolites. This is directly facil-
itated by the FPT, on the basis of its proven validity, theoretically supported by quan-
tum physics and algorithmically confirmed in robust computations. This basic science
input is needed. Starting as the well-established nuclear magnetic resonance (NMR)
spectroscopy in physics and analytical chemistry, MRS has developed to such a point
in medicine that it is currently being viewed by experts as the modality which has
the potential to revolutionize not only diagnostics, but also molecular-image-guided
surgery and target delineation for radiotherapy [16,17,19–23,41,42].

4.3 How will this strategy help MRS become part of standard diagnostics in clinical
oncology?

This strategy is multifaceted encompassing acquisition, analysis and clinical inter-
pretation of the MRS data encoded from patients with cancer. The middle part (data
analysis) of this chain amounts to finding the unequivocal solution of the quantifi-
cation problem through decomposition of the encoded data into its true metabolic
constituents. This is accomplished by the FPT. Remarkably, we see from the inner
workings of the FPT that its role is not limited to data analysis alone. On the contrary,
the very manner by which the FPT achieves high resolution dictates a complete refor-
mulation of the concept of data acquisition, by encoding a small number of short time
signals to secure good SNR. The FPT is also directly implicated in clinical interpreta-
tion by enlarging the diagnostic window through detecting at least 20 true metabolites,
in sharp contrast to merely 5 from conventional FFT-based data analysis.

4.3.1 Impossibility of a forced trade off within FFT: accuracy versus long
examination time

A major problem of MRS has been low SNR. This was partially mitigated by averaging
about 200 time signals requiring long scan times for the patient. All the conventional
methods in MRS exclusively rely upon the FFT for this full averaged time signal. This
requires long acquisition time to overcome low SNR. Since MRS time signals decay
exponentially over time, at larger times mainly noise is measured. Hence the need to
have shorter time signals to secure better SNR, since earlier encoded signal intensities
are well above the background noise level. Because of this fundamental theoretical
limitation of the FFT, it is impossible to shorten the examination time of patients and
still achieve accuracy with good SNR.
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4.3.2 Direct clinical benefits of overcoming the FFT conundrum by the FPT

The FPT eliminates the need for the said trade-off by providing accuracy plus good
SNR while simultaneously shortening the total examination time, thus making MRS
more efficient. This is possible because the frequency resolution in the FPT spectrum
is not constrained at all by the total signal length N . Consequently, time signals of
short length suffice for the FPT, which exploits the ensuing good SNR to obtain the
required frequency resolution in spectra. Figure 1 testifies to this achievement. Varying
the partial signal length NP for the same fixed bandwidth is equivalent to varying the
acquisition times. In the FFT, to achieve the required clinical accuracy by e.g. resolving
the two most closely-lying resonances (isoleucine and valine), one needs an extremely
long time signal obtained by averaged some 200 times signals each of huge length
of N = 32768 (32 MB). By contrast, the FPT splits apart isoleucine and valine with
a time signal of only 256 data points. This latter signal length is a remarkable 128
times shorter than N = 32768 needed in the FFT. Such a huge amount of truncation
results in dramatically improved SNR and, therefore, in increased accuracy through
high resolution.

4.3.3 Impact of the FPT on the data acquisition system in MRS: clinical relevance

In general, the FFT and FPT envelope spectra could be similar, but only for very low
amount of truncation of the total time signal length. For higher amounts of trunca-
tion, FFT spectra are severely distorted and exhibit broadened peaks. This results in
low resolution, poor accuracy with major information loss, as clearly seen in Fig. 1.
Simultaneously, peaks from the FPT spectra remain sharp and well resolved with
their true widths unaltered even for extremely high levels of truncation. Here lies a
distinct practical advantage in using the FPT for large amounts of truncation of the
time signal data to significantly shorten overall acquisition times in MRS. Encoding
shorter time signals automatically yields higher SNR and this, in turn, necessitates
a smaller number of time signals of the order of at most 30. A further improve-
ment of SNR is obtained by averaging these 30 encoded time signals. The subse-
quent quantification of the averaged time signals of low SNR by the FPT gives the
sought optimal accuracy with a much shorter acquisition time. However, there is an
alternative to this “signal averaging” which we call “parameter averaging”. In this
alternative, we process independently all the 30 encoded time signals and recon-
struct 30 sets of the spectral parameters for all the true resonances. The final set of
reconstructions is obtained by averaging all the 30 sets of values of each parame-
ters. This automatically gives the standard deviation of the reconstructed parameters
in the same spirit as the error bars that are conventionally obtained in virtually all
measurements.

4.3.4 Padé-guided MRS with distinct clinical advantages

The outlined strategy is of direct clinical relevance foremost because of the long
sought better diagnostic accuracy of MRS with a bonus of shorter examination
times. This improves the turn-around time for patients, making MRS an efficient and
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cost-effective diagnostic modality. Thus, better equipped mathematics via the FPT
provide not only exact quantification of MRS data, but can also fundamentally change
the way MRS time signals are encoded. Overall, the FPT has a significant advantage in
SNR over the FFT. This is because the FPT needs only short time signals compared to
conventional acquisitions using the FFT. For short time signals, the FFT yields unin-
terpretable spectra, as seen is Fig. 1. As such, the new encoding of short time signals
will presuppose the use of the FPT. It is in this way that the FPT directly influences
the measurements by designing the manner in which time signals should be encoded
to enhance the overall performance of MRS.

5 Conclusion

We have provided the proof-of-principle for exact reconstructions of all the genuine
parameters for physical metabolites from MRS time signals in the presence of noise
of the levels that are 10–25 times higher than in the previous study using the fast
Padé transform, the FPT. This was made possible by reliance upon the concept of
signal-noise separation, or SNS, consisting of unequivocal identification of genuine
or physical and spurious or unphysical resonances. The SNS is accomplished by per-
forming the stability tests of the reconstructed parameters and the generated spectral
shapes. It was shown that at the varying partial signal length and noise level, some
of the retrieved resonances fluctuate, whereas the others do not. Fluctuations signify
alterations of positions, heights, widths and phases of resonant peaks for different
noise levels and for varying truncations of the total signal length. This implies that
such resonances of peaks are unstable and, therefore, cannot represent the true con-
stituent of the physical spectrum. In sharp contrast, the other resonances that do not
change with variations of partial signal lengths and noise levels are manifestly stable
and, as such, are identified as the genuine content of the true spectrum. All these fea-
tures are presently exemplified through applications to the FIDs that are reminiscent
to the vitro MRS time signals encoded from the ovarian malignant tissue. The fast
Fourier transform or FFT for the analyzed FIDs in the noiseless case necessitates the
signal length of 32 MB to resolve all the physical resonances. By comparison, all the
listed achievements are made by the FPT using a short signal of only length 0.5 MB.
This conclusion is of a great practical usefulness, since it obviates the need for the
Fourier-imposed request of repeated acquisition of long time signals, the procedure
which entails a long turn-around time for patients’ scanning. Therefore, with the Padé-
based quantification alongside the FPT-guided encoding of MRS data of considerably
reduced length, MRS can become a reliable, cost-effective tool for diagnostics and
various aspects of patient care within clinical oncology.
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7. Dž. Belkić, K. Belkić, Unequivocal resolution of multiplets in MRS for prostate cancer by the FPT.
J. Math. Chem. 45, 819 (2009)
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